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Abstract

Novel results for the self-consistent single-particle spectral function and self-
energy are presented for non-degenerate one-component Coulomb systems at
various densities and temperatures. The GW(0)-method for the dynamical self-
energy is used to include many-particle correlations beyond the quasi-particle
approximation. The self-energy is analysed over a broad range of densities
and temperatures (n = 1017 cm−3–1027 cm−3, T = 102 eV/kB–104 eV/kB).
The spectral function shows a systematic behaviour, which is determined
by collective plasma modes at small wavenumbers and converges towards a
quasi-particle resonance at higher wavenumbers. In the low density limit, the
numerical results comply with an analytic scaling law that is presented for the
first time. It predicts a power-law behaviour of the imaginary part of the self-
energy, Im� ∝ −n1/4. This resolves a long time problem of the quasi-particle
approximation which yields a finite self-energy at vanishing density.

PACS numbers: 52.27.Aj, 52.65.Vv, 71.10.Ca, 71.15.−m

1. Introduction

Strongly correlated Coulomb plasmas, found e.g. in planetary interiors [1, 2], fusion plasmas
[3], and plasmas excited by lasers or ion beams [4], are characterized by a high degree of
spatial and temporal correlations, which lead to the emergence of phenomena like collective
plasma modes, dynamical screening of the interparticle interaction potential, and dissolution
of bound states. In particular, laser-excited plasmas cover a broad range of densities and
plasma temperatures. Values range from typical condensed matter conditions to hot, weakly
coupled plasmas.

Theoretical approaches to the physical properties of such systems have to deal with a
great complexity. A particular challenge is the formulation of a coherent theory, which is valid
over a wide range of densities (n) and temperatures (T), thereby allowing to describe matter
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in various states, e.g. a solid-state target, being transferred into a plasma by interaction with
high-power lasers and its subsequent relaxation [5]. Many-particle perturbation theory [6]
presents a general approach to many-body systems like condensed matter [7], partially and
fully ionized plasmas [8], and nuclear matter, to mention only a few. Also for non-abelian
systems, such as the quark–gluon plasma [9], there exist similar approaches to that described
here for Coulomb systems, e.g. the concept of Schwinger–Dyson equations, see the review
article [10]. The thermodynamic properties as well as the response to external perturbations
of these systems in various situations can be studied systematically [11].

The central quantity within the many-body theoretical approach is the single-particle
spectral function A(p, ω). It represents a physical observable which can be measured via
angular resolved photoemission spectroscopy (ARPES) [12–14]. Starting from the spectral
function, a number of interesting questions related to the physics of many-particle systems
can be addressed. The equation of state [15], transport cross-sections [16] (e.g. electrical
conductivity, thermal conductivity and stopping power [17]) and optical properties [18]
(emission and absorption of electromagnetic radiation) become accessible.

In this work, the focus is on the spectral function of plasmas. As an example, a one-
component electron plasma is considered which is charge compensated by a homogeneously
distributed background of positively charged ions (jellium model). The plasma is characterized
by the degeneracy parameters θ and the plasma coupling parameter � which are defined as

θ = 2mkBT

h̄2(3π2n)2/3
, � = e2

4πε0kBT

(
4πn

3

)1/3

. (1)

Here, the electron mass m was introduced, kB is the Boltzmann constant. In this work, we
consider only non-degenerate systems, θ � 1, i.e. the thermal energy kBT is large compared
to the Fermi energy EF = h̄2(3π2n)2/3/2m.

The calculation of the spectral function becomes challenging in the regime of strong
coupling, i.e. when the plasma coupling parameter becomes comparable or larger than unity.
The coupling parameter measures the ratio of the Coulomb interaction energy of two particles
at a mean distance to their thermal energy kBT . At � � 1, particle collisions become frequent,
involving transfer of both momentum and energy. The interparticle potential is screened due
to the presence of nearby third particles. These correlations significantly modify the plasma
observables and have to be accounted for in the calculation of the spectral function. This
is accomplished via the single-particle self-energy �(p, ω), which is a complex function of
both wavevector p and frequency ω, leading to a structured spectral function. Though, the
main task of many-particle theory, applied to strongly coupled systems, is to calculate the
self-energy in a suitable approximation.

The simplest approximation, often found in the literature on Coulomb systems, is the
mean-field or Hartree–Fock approximation [8]. One obtains a frequency-independent self-
energy which induces a shift in the spectral function’s pole, the so-called Hartree–Fock or
quasi-particle shift. For dilute plasmas, this correctly describes the lowering of the chemical
potential due to the averaged field of the plasma particles. Also, the shift of the ionization
energy for bound states is obtained [19, 20]. However, in dense systems, the mean-field
approximation breaks down since the dynamical screening and collective excitations cannot
be accounted for. One has to go beyond the quasi-particle picture.

A particularly successful approximation for the self-energy, including these dynamical
effects, is the so-called GW -approximation [21, 22]. Correlations are accounted for via
the dynamically screened interaction potential W(q, ω), rather than via the bare Coulomb
interaction. The GW approximation knows a long history of applications in the field of
condensed matter theory. Examples are the calculation of single-particle spectra in the
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homogeneous electron gas [23–25], bandgaps in semiconductors [26], effective masses of
metal electrons [27], optical and electronic properties of insulators [28], electronic structure
of superconductors [29], but also atomic and molecular systems [30–32]. In particular, GW

self-energy corrections systematically improve band-gap calculations performed by means of
density functional theory [33–35].

Recently, the GW approximation has been applied also to dense plasmas. Whereas
Fehr et al [36] performed lowest order (one-loop) self-energy corrections to the equation of
state, Wierling et al [37] carried out pioneering self-consistent calculations of the electron
self-energy in the solar-core plasma. An asymmetrically broadened, otherwise featureless
spectral function was obtained. In this work, the GW self-energy and the corresponding
spectral function is investigated for non-degenerate, one-component electron plasmas. Only
unbound electrons are considered, bound state contributions can be accounted for via T-matrix
calculations, as done in [38]. The self-energy is evaluated for a broad range of densities and
temperatures, going from ideal, weakly coupled plasmas (� � 1) to the strong coupling
regime � � 1. As a novel contribution to the field, an analytic scaling law for the GW

self-energy at low densities is derived which accurately describes the numerical data in this
limit. This expression can be combined with corresponding formulae that are valid in the
degenerate case, when kBT � EF, to construct a fit formula for the self-energy which then
covers a large portion of the density–temperature plane.

Formerly, analytic expressions for the self-energy have been derived that base on the
quasi-particle approximation [39]. In particular, the completely degenerate electron gas at
T = 0 was considered, using the plasmon-pole approximation [40], and also weakly coupled
(� � 1), classical plasmas (EF � kBT ), using the Born approximation for the self-energy
[8]. The latter result exhibits several problems: the imaginary part of the quasi-particle self-
energy is independent of density and carries a prefactor ∝1/h̄. Thus, there is an unphysical
finite damping of single-particle states even in the vacuum and the classical limit h̄ → 0 is
not defined. On the other hand, from physical arguments, one expects that the self-energy
vanishes at zero density and that it is a purely classical expression (h̄ = 0), when θ � 1. This
problem has remained unresolved up to now. The real part of the quasi-particle self-energy is
well behaved, i.e. it vanishes at zero density and is purely classical.

The new analytic expression for the self-energy presented in this paper is derived without
the quasi-particle approximation, i.e. it is a non-perturbative result. It is shown that only this
non-perturbative treatment leads to an expression that is classical for both the real and the
imaginary part and vanishes exactly in the vacuum limit n → 0.

The work is organized as follows: after a brief recapitulation of the single-particle spectral
function and the GW -method in section 2, numerical results for the self-consistent spectral
function and self-energy will be discussed in section 3. Section 4 contains the derivation of the
non-perturbative scaling law and comparison to the numerical results. In section 5, it will be
analysed why the quasi-particle picture is incapable to give a physically consistent result for
the imaginary part of the self-energy. Conclusions will be drawn in section 6. The appendix
contains detailed calculations that are only summarized in the main part of the paper.

2. Spectral function and self-energy

The derivation of the GW -approximation involves some lengthy manipulations. In this section,
only the most relevant formulae are given, while appendix A contains the detailed steps.

Central to the description of electronic properties in a many-body system, which
is in thermodynamic equilibrium, is the thermodynamic electron single particle Green
function G(p, zν), defined at the discrete Matsubara frequencies zν = (2ν + 1)π ikBT/h̄,
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ν = 0,±1,±2, . . .. It is related to the single-particle self-energy �(p, zν) via Dyson’s
equation

G(p, zν) = G(0)(p, zν) + G(0)(p, zν)�(p, zν)G(p, zν)

= [
G(0)−1

(p, zν) − �(p, zν)
]−1

, (2)

with the free Green function G(0)(p, zν) = [h̄zν − εp]−1. Also, the single-particle energy
εp = h̄2p2/2m − μ is introduced, μ is the electron chemical potential. G(p, zν) contains the
thermodynamic properties of a single particle coupled to a thermal bath at a given temperature
T. For example, the momentum distribution function is easily obtained by summation of the
Green function over all Matsubara frequencies,

n(p) = kBT
∑
zν

G(p, zν). (3)

Instead of the complex Matsubara Green function, it is more convenient to operate on the
real valued spectral function A(p, ω), defined on the real frequency axis. It carries the same
information as the Green function and is defined via the spectral representation of the latter,

G(p, zν) =
∫ ∞

−∞

dω

2π

A(p, ω)

zν − ω
. (4)

Here, ω is a real valued frequency. This relation can be resolved for A(p, ω),

A(p, ω) = − lim
δ→0+

2 Im G(p, ω + iδ) (5)

= lim
δ→0+

−2 Im �(p, ω + iδ)

[h̄ω − εp − Re �(p, ω)]2 + [Im �(p, ω + iδ)]2 , (6)

i.e. the spectral function is obtained after analytic continuation of the Green function from the
Matsubara frequencies to arbitrary complex frequencies as the imaginary part of G(p, ω + iδ),
when δ approaches zero from positive values. In this way, the sign of the imaginary part of the
self-energy is fixed, i.e. Im �(p, ω) < 0 for δ > 0. The real part of the self-energy behaves
unambiguous for δ = 0.

The spectral function usually exhibits several resonances, including a central peak, located
at the quasi-particle energy Ep, i.e. the solution of the quasi-particle dispersion

Ep = εp + Re �(p, Ep/h̄), (7)

accompanied by symmetrically distributed satellites which are attributed to collective modes
in the many-particle system [40]. The width of the resonances in the frequency domain is
commonly identified with the inverse life-time of these excitations.

Let us first look at the lowest order approximation to the self-energy, the Hartree–Fock
term �HF(p). It is given by the convolution of a non-interacting Green function with the
unscreened Coulomb potential V (q) = e2/ε0q

2�0 (�0 is a normalization volume),

�HF(p, zν) = −kBT
∑
ωμ,q

G(0)(p − q, zν − ωμ)V (q) (8)

=
∑

q

[1 − nF(εp−q)]V (q) ≡ �HF(p), (9)

with the Fermi distribution function nF(h̄ω) = [exp(h̄ω/kBT ) + 1]−1. In the first line,
summation takes place over the Bosonic Matsubara frequencies ωμ = 2π iμkBT/h̄, μ =
4
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0,±1,±2, . . . . The first term
∑

q V (q) (Hartree term) diverges, but it is exactly compensated
by the same term from the positive charge background. The second term (Fock term or
exchange term) gives a finite contribution. Closed expressions can be given in the case of non-
degenerate plasmas [8, 39] and completely degenerate Fermi gases [7]. One finds �HF(p) ∝ n

in the high temperature limit (kBT � EF) and �HF(p) ∝ n1/3 in the quantum degenerate
case kBT � EF, see [8] for details. Thus, the Hartree–Fock self-energy fulfils the physical
constraint to vanish at zero density.

The Hartree–Fock term is a real function of momentum, only. The corresponding spectral
function is shifted from the free particle dispersion,

AHF(p, ω) = 2πδ(εp + �HF(p) − h̄ω). (10)

No imaginary part of the self-energy appears in this approximation, i.e. the life-time of the
Hartree–Fock quasi-particles is infinite. This is consequence of the mean-field approximation,
where no fluctuations of the electric field, i.e. no dynamics of the surrounding plasma particles
are taken into account. Recently, also the second-order exchange contribution to the self-
energy has been obtained in closed form [41, 42], see also [43]. However, this term and all
higher order terms, involving only the bare Coulomb potential, do not lead to a finite particle
life-time, only a shift of the dispersion relation is obtained.

To describe the situation in a dense and strongly correlated system, where the single-
particle states are spectrally broadened, i.e. they acquire a finite life-time, one has to go beyond
the quasi-particle approximation, and take into account the screening of the interaction. The
GW -approximation, can be regarded as the generalization of the Hartree–Fock theory to
dynamically screened interactions. It was introduced by Hedin [23] for the homogeneous
electron gas, and is defined as

�(p, zν) = −kBT
∑
q,ωμ

G(p − q, zν − ωμ)W(q, ωμ). (11)

W(q, z) is the dynamically screened interaction. Note that the GW approximation is a self-
consistent ansatz, since the self-energy appears on the lhs as well as in the Green function on
the rhs of (11). Also, the screened interaction W(q, ωμ) is a functional of the Green function
via the dielectric function ε(q, ωμ), i.e. the polarization function �(q, ωμ):

W(q, ωμ) = V (q)

ε(q, ωμ)
= V (q)

1 − V (q)�(q, ωμ)
. (12)

In GW -approximation, �(q, ωμ) is given by the inner product of two Green functions,
�(q, ωμ) = −kBT

∑
p,zν

G(q+p, zν +ωμ)G(p, zν). The ‘double’ self-consistency implied in
this ansatz makes the GW -approximation complicated and a numerically demanding problem.
On the other hand, the full GW -approximation suffers from deficiencies due to the neglect
of vertex-corrections [44], such as violation of the f -sum rule [45]. This problem can be
avoided by keeping the dynamically screened interaction on the level of the random phase
approximation (RPA) [46], defined by the RPA polarization function,

�RPA(q, ωμ) = −kBT
∑
p,zν

G(0)(p − q, zν − ωμ)G(0)(p, zν), (13)

�RPA(q, ω + iδ) = −
∑

k

nF(εk+q/2) − nF(εk−q/2)

h̄(ω + iδ) + εk−q/2 − εk+q/2
. (14)

The use of the RPA polarization function leads to the so-called GW(0) approximation for
the self-energy. It has been shown to give more accurate quasi-particle energies [25]
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than the full GW -approximation. Additionally, it is known that higher order corrections
beyond GW(0), such as vertex-corrections and corrections in the polarization function beyond
RPA, partially compensate. Therefore, ignoring them altogether is expected to give better
results than accounting for one or the other [22]. The f -sum rule is fulfilled. Further sum
rules, e.g. for the moments of the spectral function can be derived [24] which are useful to
control the numerical treatment of the integral equations to solve.

The inverse dielectric function ε−1
RPA(q, ω) describes the propagation of electromagnetic

waves in the plasma. As a main feature, it contains the longitudinal plasma oscillations or
plasmons. These resonances show up as peaks in the inverse dielectric function, located
at the roots of the plasmon dispersion Re εRPA(q, ω) = 0. For non-degenerate systems, as
considered here, the plasmon dispersion can be expanded in powers of the wavenumber q,
and one finds the Gross–Bohm relation [47] ω2

res(q) = ω2
pl(1 + q2/κ2) + (h̄q2/2m)2 for the

plasmon resonance frequency ωres(q). Here, the plasma frequency ωpl and the inverse Debye
screening length κ ,

ωpl =
[

ne2

ε0m

]1/2

, κ =
[

ne2

ε0kBT

]1/2

, (15)

have been introduced. A detailed discussion of the plasmon resonance in dense plasmas can
be found in [48]. For the present discussion, it is important to keep in mind that the collective
plasma excitations are accounted for via the inverse dielectric function in RPA. This is the
main advantage of the GW(0)-approximation compared to the mean-field or Hartree–Fock
approximation. Depending on the choice of parameters like density and temperature, these
plasmon resonances determine the shape of the self-energy as a function of the frequency and
thereby also the spectral function, where satellites besides the quasi-particle peak indicate
coupled electron–plasmon modes, often referred to as plasmarons [40].

It should be noted at this point that contributions from bound states to the self-energy are
not accounted for in this work. The description is limited to fully ionized plasmas. Bound
state contributions can be included using the concept of the T-matrix, see e.g. the work by
Schmielau et al [38].

Using the spectral representation (4) and the screened interaction (12), the following
equation for the imaginary part of the self-energy in GW(0)-approximation is obtained after
summation over the Bosonic Matsubara frequencies ωμ,

Im �(p, ω + iδ) = h̄

nF(h̄ω)

∑
q

∫ ∞

−∞

dω′

2π
V (q)A(p − q, ω − ω′)

× Im ε−1
RPA(q, ω′)nB(h̄ω′)nF(h̄ω − h̄ω′), (16)

with the Bose–Einstein distribution function nB(h̄ω) = [exp(h̄ω/kBT ) − 1]−1. The real part
of the self-energy is obtained by means of Hilbert transform as

Re �(p, ω) = �HF
int (p) + P

∫ ∞

−∞

dω′

π

Im �(p, ω′)
ω − ω′ . (17)

P denotes the Cauchy principal value integration, �HF
int (p) is the Hartree–Fock self-energy of

the interacting system,

�HF
int (p) = −h̄

∑
q

∫ ∞

−∞

dω

2π
A(p − q, ω)nF(h̄ω)V (q). (18)

Finally, to close the set of equations, the chemical potential has to be fixed by inversion of the
density relation

n(μ, T ) = 2
h̄

�0

∑
p

∫ ∞

−∞

dω

2π
A(p, ω)nF(h̄ω). (19)

6
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The factor 2 in front of the rhs stems from the summation over the spin components. Together
with Dyson’s equation (6), (16)–(19) constitute a system of nonlinear integral equations for
the self-energy.

Besides the normalization of the spectral function

h̄

∫ ∞

−∞

dω

2π
A(p, ω) = 1, (20)

similar sum-rules can be derived also for higher moments of the spectral function [24]. These
are independent of the concrete approximation used for the self-energy. In second order,
one obtains an equation relating the first moment of the spectral function to the interacting
Hartree–Fock self-energy (9),

h̄2
∫ ∞

−∞

dω

2π
ωA(p, ω) = εp + �HF

int (p). (21)

Similarly, the second moment is related to the Hartree–Fock energy and the frequency
integrated imaginary part of the self-energy, which is itself a conserved quantity, at least
within the GW(0) approximation, see (23) below,

h̄3
∫ ∞

−∞

dω

2π
ω2A(p, ω) = h̄

∫ ∞

−∞

dω

π
Im �(p, ω + iδ) +

(
εp + �HF

int (p)
)2

. (22)

For the GW(0) self-energy, Holm and von-Barth have found the following identity, relating the
integrals over the imaginary part of the self-energy to the totally integrated response function,

h̄

∫ ∞

∞

dω

π
Im �(p, ω + iδ) = h̄

∑
q

∫ ∞

−∞

dω

2π
V (q)Im ε−1

RPA(q, ω). (23)

In the next section, results for the self-energy will be presented that are obtained via
numerical solution of (16). The sum rules given above are used to check the accuracy of the
numerical results.

3. Numerical results

The GW(0)-approximation is evaluated numerically for various sets of plasma parameters in
the following. A typical example of a weakly coupled (� = 0.07), moderately degenerate
(θ = 2.2) plasma is the plasma at the solar core, with temperatures of T 	 100 Ry/kB 	
1360 eV/kB and electron densities of n 	 7×1025 cm−3 [49]. The solar core plasma has been
investigated using the GW(0)-method in a number of previous publications, see [18, 37, 50].
Here, most attention is paid to a systematic analysis of the single-particle spectral function and
the self-energy over a broad range of densities and temperatures, however, sticking to non-
degenerate plasmas and neglecting bound states. We therefore start with a plasma temperature
that equals the solar core temperature and a density that is 10% of the solar core electron
density. Later, higher and lower temperatures will be considered as well, i.e. kBT = 10 Ry
and kBT = 1000 Ry. Note that kBT is always chosen large against typical binding
energies of atoms which are usually of the order of several Ry. Thus, bound states can be
neglected.

The numerical solution of equation (16) is performed by means of an iterative algorithm,
starting from a suitable initialization of the spectral function. Typically, the algorithm
converges after 5–10 iterations. The threefold integral (16) is evaluated on a two-dimensional
grid with roughly 100 nodes in the frequency coordinate and 10–20 nodes in the momentum
coordinate. The angular integral is performed first, followed by the frequency integration and

7



J. Phys. A: Math. Theor. 41 (2008) 445501 C Fortmann

-10

-8

-6

-4

-2

0

-40 -20  0  20  40
Im

Σ(
p
=

0
,ω

) 
[R

y
]

-10

-5

0

5

10

-40 -20  0  20  40

R
e

Σ(
p
=

0
,ω

) 
[R

y
]

-50

-25

0

25

50

-40 -20  0  20  40

− h
ω

+μ
-R

e
Σ(

p
=

0
,ω

)

0.0

0.1

0.2

0.3

-40 -20  0  20  40

A
(p

=
0
,ω

)

energy −hω+μ [Ry]

-−hωpl
−hωpl

Figure 1. Self-energy (in units of the Rydberg energy, 1 Ry = 13.6 eV), dispersion relation (in
units of Ry), and spectral function (in units of 1/Ry) for plasma density n = 7 × 1024 cm−3

(10% of the solar core density) and temperature T = 100 Ry/kB = 1360 eV/kB. The
spectral function contains two weakly pronounced plasmaron satellites, appearing at slightly
smaller energies than the plasma frequency (dashed vertical lines). The chemical potential is
μ = −377 Ry = −5133 eV.

the integration over the modulus of the wavenumber q. The result is checked for consistency
in each iteration using the sum-rules (21–23). Further details concerning the numerical
implementation are provided in [51].

Figure 1 shows the numerical result for the self-energy (imaginary and real part),
dispersion relation h̄ω + μ − h̄2p2/2m − Re �(p, ω), and the spectral function for plasma
parameters chosen as n = 7 × 1024 cm−3 for the plasma density, i.e. 10% of the solar core
density, and T = 100 Ry = 1360 eV/kB for the plasma temperature. The chemical potential
is μ = −377 Ry = −5133 eV. The momentum was fixed at h̄p = 0.

The spectral function at the chosen parameters is a broadened resonance with two
satellites appearing at about h̄ω + μ = ±5 Ry which is slightly below the plasma frequency
h̄ωpl = 7.2 Ry at the chosen conditions. The plasma frequency is indicated by the dashed
vertical lines. As already mentioned, these satellites are often referred to as plasmarons, i.e. a
coupled mode between the single-particle resonance and the collective plasma oscillation [40].
The imaginary part of the self-energy (top graph) is peaked at the free dispersion h̄ω + μ = 0
and this peak leads to the small dip in the spectral function between the satellites, see (6). The

8
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Figure 2. Spectral function for plasma density n = 7×1024 cm−3 and temperature kBT = 1360 eV
(solar core temperature) as a function of momentum and density. The black line on the bottom
represents the free dispersion relation h̄ω = εp = h̄2p2/2m − μ. At the present parameters the
chemical potential is μ = −377 Ry.

real part of the self-energy (second graph from top) is a rather smooth function, leading to
only small variations in the dispersion (third graph from top).

Next, the dependence of the spectral function on the wavenumber p is analysed.
In figure 2, the spectral function A(p, ω) is shown for five different wavenumbers, i.e.
p = 0, 5a−1

B , 10a−1
B , 15a−1

B and 20a−1
B , aB = 4πε0h̄

2/me2 is the Bohr radius. The density
and temperature are the same as before, n = 7 × 1024 cm−3, kBT = 100 Ry. At increased
wavenumber

(
p � 5a−1

B

)
, enhanced complexity of the spectral function is observed. The

plasmaron peaks, which at h̄p = 0 appear as small shoulders in the otherwise broad central
resonance, are better defined. The central quasi-particle peak itself becomes narrower and the
plasmaron peaks separate. At the highest momenta considered

(
h̄p > 15a−1

B

)
, the plasmarons

themselves are damped out, and a single, narrow resonance forms, located near the single-
particle energy h̄ω = εp = h̄2p2/2m − μ, i.e. the quasi-particle picture is restored. Some of
these features, especially the plasmaron satellites are already known from literature [40].

Now that the general characteristics of the spectral function have been discussed, the
central concern of this paper can be worked out, i.e. the analysis of the dependence of the
self-energy and the spectral function on the plasma parameters density and temperature.
In figure 3, the spectral function at p = 0 is shown for five different densities between
n = 7×1025 cm−3 (solar core conditions) and 0.01% of the solar core density. The temperature
is kept constant at T = 100 Ry/kB = 1360 eV/kB. The spectral function drastically changes
with varied density. In the case of the highest density considered, a narrow quasi-particle peak
accompanied by two separate plasmaron satellites (indicated by arrows) is observed. The
quasi-particle peak is notably shifted from the free dispersion ε0 = μ, due to the real part of
the self-energy. Going to lower densities, the plasmaron satellites merge into the central peak,
as can be seen in the case of the spectral function for n = 7 × 1024 cm−3 and also the quasi-
particle shift is reduced. Finally, at the lowest densities considered, n = 7 × 1022 cm−3 and
7 × 1021 cm−3, a single, narrow quasi-particle resonance is obtained which is centred around
the free dispersion. The width decreases with the density which is the expected behaviour in
the low density limit.
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In order to study the dependence of the self-energy on density and temperature in more
detail, the effective quasi-particle self-energy �(p, Ep/h̄) as a function of the density at
various temperatures is considered. This quantity gives the shift and width of the central peak
in the spectral function A(p, ω), i.e. when ω is close to the quasi-particle frequency Ep/h̄,
see (7). The results for the imaginary part of the effective quasi-particle self-energy at p = 0
as a function of the plasma density are shown in figure 4. Three different temperatures have
been assumed, T = 10, 100 and 1000 Ry/kB. Towards low densities, a systematic decrease
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of −Im �(0, E0/h̄) with the density is observed which is also known from the literature
[37]. The asymptotes to the low density behaviour, shown as thin dotted lines, indicate that
Im �(p, Ep/h̄) scales proportional to −n1/4. This behaviour will be analysed in more detail
in section 4, where an analytic solution for the GW self-energy is derived that exhibits the
same n1/4 proportionality.

At higher densities, the power law behaviour terminates and the self-energy starts to
decrease. This can be understood by looking again at figure 3. Here, it was shown that at
increased density, the plasmaron satellites separate from the central quasi-particle peak, i.e.
spectral weight is shifted to the satellites and the central peak narrows. The calculations have
only been performed for non-degenerate systems, i.e. for densities, where the degeneracy
parameter θ = kBT/EF is still large compared to unity. The extension to degenerate systems
is straightforward and is covered in another paper [51], but will not be treated in this work.

The real part of the self-energy (effective quasi-particle shift), at the densities and
temperatures considered here, was found to follow exactly the Hartree–Fock behaviour, i.e.
Re �(0, E0/h̄) = −h̄2κ2/2m ∝ −n [8]; κ is the inverse Debye screening length, see (15).

4. Analytic solution for the GW (0) self-energy in Born approximation: classical limit

4.1. Derivation of the analytic solution

As discussed, the spectral function in the low density limit is lacking any plasmaron resonances,
only a broadened quasi-particle peak appears, see figure 3. In order to understand this
behaviour, the GW(0)-equation (16) is reconsidered applying a sequence of approximations
as described in the following. In this way, an analytic solution is found that is valid at low
coupling parameters.

It will be shown that the observed scaling is obtained correctly, if the imaginary part of the
self-energy is kept finite also on the rhs of the self-energy integral equation (16). It therefore
represents a generically non-perturbative result. Details of the calculations can be found in
appendix B.

Since collective excitations do not show up in the self-energy and the spectral function
at low densities, it is obvious to neglect these features already in the screened interaction.
Formally, this is achieved by replacing the complete inverse dielectric function by the Born
approximation,

Im ε−1(q, ω) 	 − Im ε(q, ω)

|ε(q, 0)|2 . (24)

For the static dielectric function appearing in the denominator, we use the Debye expression
εD(q, 0) = 1 + κ2/q2, with the inverse Debye screening length. In other words, instead of the
interaction via a dynamically screened potential, electron–electron collisions via a statically
screened potential are considered using the Born approximation. Then, (16) turns into

Im �(p, ω + iδ) =
√

2mkBT

π3

e2κ2

4πε0

∫ 1

−1
d cos θ

∫ ∞

−∞
dω′

×
∫ ∞

0

dq q

(q2 + κ2)2
exp

(
− mω′2

2q2kBT

)
exp

(
h̄ω′

2kBT

)

× Im �(p − q, ω + iδ − ω′)
[h̄ω − h̄ω′ − εp−q − Re �(p − q, ω − ω′)]2 + [Im �(p − q, ω + iδ − ω′)]2 .

(25)
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Figure 5. Imaginary part of the self-energy at momentum h̄p = 0 for plasma parameters
n = 7 × 1021 cm−3 and T = 100 Ry/kB. The self-consistent Born approximation (finite q,
dashed curve) is compared to the calculation where the momentum shift h̄q is neglected in the
self-energy on the rhs of the self-energy equation (solid curve).

Note that the dielectric function is taken in the classical limit, i.e. the Fermi–Dirac distribution
is replaced by the Maxwell distribution, leading to the exponentials in the first line of (25).

Due to the statically screened Coulomb potential, important contributions to the q-integral
stem from values q � κ . Therefore, we neglect the shift of momentum in the self-energy
on the rhs of equation (25), i.e. we write �(p − q, ω − ω′) 	 �(p, ω − ω′). To justify this
approximation, we show the numerical solution for the imaginary part of the self-energy (25)
in figure 5 (dashed curve). The solid curve corresponds to the solution that is obtained by
neglecting the momentum shift in the argument of the self-energy on the rhs of (25). As can be
seen, this approximation does not modify the result significantly. In fact, the small deviations,
which are only observable around h̄ω + μ 	 0, are already in the order of the numerical
accuracy.

Subsequently, the remaining terms in (25) are expanded in powers of q/κ , as described
in detail in the appendix. Finally, the threefold integral can be performed and the equation

[Im �(p, ω + iδ)]2 + [h̄2p2/2m − μ − h̄ω + Re �(p, ω)]2 = kBT
κe2

4πε0
(26)

is obtained. The lhs is just the denominator of the spectral function, cf (6). Together with the
spectral representation of the Green function (4), we then find the equation

[h̄z − h̄2p2/2m + μ − �(p, z)]−1 = 4πε0

κe2kBT
�(p, z), (27)

which, in the limit z = ω + iδ, δ → 0+ has the solution

�(p, ω + iδ) = h̄ω − h̄2p2/2m + μ

2
− sign(h̄ω − h̄2p2/2m + μ)

×
[(

h̄ω + iδ − h̄2p2/2m + μ

2

)2

− κe2

4πε0
kBT

]1/2

. (28)
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The signum function,

sign(ω) =
{

1 ⇔ ω � 0
−1 ⇔ ω < 0,

(29)

ensures the correct sign of the imaginary part of the self-energy, i.e. Im �(p, ω + iδ) < 0 for
δ > 0.

4.2. Comparison to the numerical solution

The imaginary part of (28) is plotted in figure 6 for T = 100 Ry/kB and n = 7 × 1021 cm−3,
i.e. for the smallest density considered in figure (3). The analytic formula is compared to the
full numerical solution for two different wavenumbers, p = 0 (a) and p = 1/aB (b). The
dotted vertical line indicates the position of the quasi-particle dispersion Ep. In the first case,
both numerical and analytic calculation agree reasonably well, albeit the analytic solution lies
systematically above the numerical data. However, the overall deviation is smaller than 7%.
In the second case (p = 1/aB), the upshifted plasmon peak, present in the numerical result,
is not reproduced by the analytic formula. Thus, the analytic formula is applicable only for
small momenta, while at higher momenta, the dynamical features of the interaction become
important.

On the other hand, the analytic formula is very useful to initialize the numerical algorithm.
This is analysed in figure 7. Here, the spectral function, that is obtained in the first iteration
of the algorithm, was computed in two different ways for the same parameters as above,
n = 7 × 1021 cm−3 and kBT = 100 Ry. The dashed curve gives the first iteration starting
from the analytic formula (28) for the self-energy, the dotted curve is the same calculation but
starting from a narrow Gaussian spectral function with a width of 0.3 Ry (FWHM). In plot (a)
the wavenumber is p = 0, while in (b), p = 1/aB was chosen. For p = 0, the analytic ansatz
leads to a good resemblance with the converged result (solid curve). The converged result is
taken here as the 20 iteration starting from the Gaussian ansatz. The Gaussian ansatz, iterated
once, results in a two-peak structure which is far from the converged spectral function. Also
at p = 1/aB, starting from the analytic ansatz gives a much better overall correspondence
than the calculation starting from a Gaussian spectral function, although subtle details like the
plasmaron peak at h̄ω + μ 	 4 Ry is not reproduced in the first iteration.

In order to perform a quantifiable comparison between both initializations and their impact
on the convergence of the algorithm, we determine the mean squared deviation of the spectral
function in a given iteration ν from the converged result Sν = N−1 ∑N

i=1(A
(ν)(0, ωi) −

A(20)(0, ωi))
2 with N the number of points on the ω-grid of the spectral function, ωi the

grid points. The result is shown in figure 8 for the Gaussian ansatz (marked +) and
the initialization using the analytic self-energy (marked ×). During the first four iterations,
the mean squared deviation of the second method is by two orders of magnitude smaller than
if using the Gaussian spectral function. While the mean squared deviation using the analytic
self-energy becomes smaller than 10−2 already after five iterations, it takes eight iterations for
the Gaussian ansatz to get to this point. Also, it was found that a Gaussian with the width
fixed at the imaginary part of the effective quasi-particle self-energy, does not improve the
convergence, since the special form of the self-energy and the spectral function with a broad
plateau and steep edges cannot be reproduced by such an ansatz and the analytic self-energy
given in (28) should be used instead.
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Figure 6. Imaginary part of the self-energy for plasma density n = 7×1021 cm−3 and temperature
T = 100 Ry/kB. Results for p = 0 (a) and for p = 1/aB (b) are shown. The self-consistent
GW(0)-calculation (solid curve) is compared to the analytic formula (28) given as dashed curve.
The dotted vertical line indicates the quasi-particle dispersion h̄ω = Ep.

4.3. Analytic solution at the quasi-particle dispersion

In the following, the analytic solution (28) with the frequency fixed at the quasi-particle
dispersion ω = Ep/h̄ shall be considered in more detail. The numerical results for �(p, Ep/h̄)

at p = 0 have already been discussed in section 3, see figure 4. Since the only dependence on
frequency and wavenumber is given by the trivial term h̄ω − h̄2p2/2m + μ = h̄ω − εp, the
discussion may be restricted to the case p = 0 and h̄ω = ε0 = −μ. Note that due to (28)
Re �(p, εp) = 0, therefore Ep = εp. Then, the imaginary part of (28) reads

Im �(0,−μ/h̄) = −
√

κe2kBT

4πε0
= −

[(
e2

4πε0

)3

4πnkBT

]1/4

, (30)
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Figure 7. Spectral function for plasma density n = 7 × 1021 cm−3 and temperature
T = 100 Ry/kB. Plot (a) shows the spectral function at p = 0, in (b) p = 1/aB was chosen. The
first iteration starting from a sharp quasi-particle spectral function (dotted curve) is compared to
the first iteration starting from the analytic expression for the self-energy (dashed curve).

which can also be given in terms of the plasma coupling parameter �,

Im �(0,−μ/h̄) = −(3�3)1/4kBT . (31)

This value is the damping width neglecting the influence of electron–plasmon interaction via
the dynamically screened potential. In the following, it is referred to as the non-collective
damping width. The non-collective damping width depends solely on the temperature and the
classical coupling parameter �. Therefore, it is a purely classical result.

We compare this result to the numerical solution for the GW(0) self-energy, presented
in section 3. In figure 9, the effective quasi-particle self-energy at vanishing momentum
Im �(0, E0/h̄), in units of the plasma thermal energy, is shown as a function of �. The
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η = √

κaB > 1.

numerical results perfectly agree with the derived scaling law in the low density limit. As long
as the density is small, such that the plasma frequency is below the non-collective damping
width, i.e.

η = h̄ωpl√
κe2kBT/4πε0

� 1 (32)
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the damping is mainly non-collective, and a single, broadened resonance appears in the spectral
function, cf figure 3.

The parameter η can also be expressed through the plasma coupling parameter � and the
degeneracy parameter θ , or through the inverse Debye screening length κ ,

η =
(

27

35/2π2

)1/6

�−1/4θ−1/2 	 0.9698 �−1/4θ−1/2, (33)

η = √
κaB. (34)

Thus, the derived scaling law is only valid for large θ , i.e. classical systems. This was already
shown in figure 4. When θ approaches 1, quantum effects set in. For example, collisions
become less probable due to Pauli blocking which leads also to a decrease of the self-energy.

Obviously, the Bohr radius aB sets the relevant length-scale that is to be compared to
the inverse screening length κ in order to estimate the importance of non-collective damping.
Non-collective damping is the dominant mechanism, as long as the screening length is large
compared to the Bohr radius. When the screening length becomes smaller than the Bohr
radius, i.e. η > 1, which, due to (32), is equivalent to having the energy of plasma oscillations
larger than the non-collective damping width, the plasmaron satellites begin to separate from
the broadened quasi-particle peak. Spectral weight is transferred from the wings of the central
peak into the plasmaron satellites leading to a more defined quasi-particle resonance, i.e. a
decreased damping of the central peak, see figure 3. Concluding, the analytic result is only a
good approximation at low densities, when η � 1. At higher densities, dynamical screening
becomes important, leading to satellites in the spectral function.

5. Deficiencies of the quasi-particle approximation

The non-collective damping width was introduced above in (30) as the value of the imaginary
part of the self-energy at vanishing momentum and frequency, p = 0, ω + μ/h̄ = 0. Of
course, the same result is also obtained if this choice of variables was already made at the very
beginning of the calculations leading to (28). However, in the latter case, the manipulations
can be performed in a different manner. At an intermediate step of the calculation, one
can identify the reason why the quasi-particle damping Im �(p, Ep/h̄) as given in [8, 39],
behaves unphysical in the low density and classical limits. Detailed calculations are given in
appendix C, while here only the most important steps are summarized.

Setting p = 0 and h̄ω + μ = 0 in (16), neglecting the momentum shift in the argument of
the self-energy on the rhs and replacing the dynamically screened potential by the statically
screened Born approximation as before, we obtain

Im �(0,−μ/h̄) = − e2κ2

πε0h̄

√
mkBT

2π

∫ ∞

0

dq q

(q2 + κ2)2
Re[exp(−z2) erfc(iz)], (35)

with

z = h̄2q2 + i2m Im �(0,−μ/h̄)

2h̄q
√

2mkBT
. (36)

Most contributions to the integral stem from small values of the wavevector, q � κ .
Therefore, we may neglect the real part of z and write z = i

√
2m Im �(0,−μ/h̄)/2h̄q

√
kBT .

Using the expansion

lim
x→+∞ exp(x2) erfc(x) = 1√

πx
− 1

2
√

πx3
+ O(x−5) (37)
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in lowest order only, the q-integral can be performed, resulting in

Im �(0,−μ/h̄) = −
√

κe2kBT/4πε0, (38)

which coincides with (28) at p = 0 and h̄ω = −μ.
From (35), one can also derive the quasi-particle approximation for the imaginary part of

the self-energy: if the imaginary part of z, i.e. the self-energy, is neglected on the rhs (this
is just the quasi-particle approximation), and furthermore the limit q → 0 is considered, the
expression

Im �QP(0,−μ/h̄) = − e2κ2

πε0h̄

√
mkBT

2π

∫ ∞

0

dq q

(q2 + κ2)2

= − e2

4πε0h̄

√
2mkBT

π
, (39)

is obtained.
This coincides with the formula for the imaginary part of the quasi-particle self-energy

as given in [8, page 114, equation (4.164)]. There, the spectral function on the rhs of
the integral equation for �(p, ω) is replaced by an on-shell delta distribution (free particle
spectral function), i.e. the self-energy is set to 0 on the rhs. The resulting integral is evaluated
at the free particle dispersion h̄ω = εp.

As a result, one obtains the expression

Im �(p, εp/h̄) = − e2

4πε0h̄

√
2mkBT

π
1F1(1, 3/2;−εp/2kBT ), (40)

with 1F1(α, β; z) being the confluent hypergeometric function [52]. Note that in the given
reference, instead of the imaginary part of the self-energy, the quasi-particle damping
�(p, εp/h̄) = −2Im �(p, εp/h̄) is given. Also, the original formula differs from (40) by a
factor of 1/4. However, the formula given here was approved through private communication
by W-D Kraeft.

Obviously, (40) is independent of density. The neglect of Im �(0,−μ/h̄) in the complex
variable z leads to a different analytical structure of the equation. Therefore, the quasi-particle
approximation has no chance to ever obtain the correct behaviour at low densities. Low
densities, and therefore small inverse screening lengths κ shift the supporter of the q-integral
to small q, where contributions from Im z are important, whereas the real part of z vanishes at
q = 0 and leads to a result which is independent of κ .

In the same way, one can understand why the quasi-particle limit diverges when
considering the classical limit h̄ → 0. The imaginary part of z has h̄ in the denominator
which after the integration cancels the h̄ in the prefactor in equation (35). No cancellation
takes place, if the imaginary part is neglected, i.e. in the quasi-particle approximation. This
leads to the divergence of the final result.

6. Conclusion

In this work, the single-particle self-energy of the one-component electron plasma was
investigated. The spectral function was calculated self-consistently using the GW(0)-
approximation which allows the systematic treatment of dynamical correlations in the
plasma. The spectral function contains at small momenta a broadened quasi-particle
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peak and two plasmaron satellites which, at low densities, merge into the central quasi-
particle resonance. At increased momenta, for a given density and temperature, the
spectral function converges to a single, sharp quasi-particle resonance. Special attention
was paid to a systematic investigation of the self-energy and the spectral at different
densities and temperatures. Here, only non-degenerate plasmas were considered, i.e.
the temperature is large compared to the Fermi temperature. Also, bound states were
neglected.

It was found that at low densities, the imaginary part of the on-shell self-energy, i.e.
the inverse single particle lifetime, follows a universal scaling law Im �(p, Ep/h̄) ∝ −n1/4.
For the first time, an analytic result for the on-shell single-particle self-energy was found
that contains the correct low-density limit, i.e. a vanishing self-energy at n = 0. This
is a major progress compared to the well-known quasi-particle approximation that yields
a finite damping width even at zero density. The new on-shell single-particle damping
width is −Im �(p, Ep/h̄) = (3�3)1/4kBT . Since it is derived in Born approximation, i.e.
no collective excitations contribute to the damping mechanisms, this quantity is called the
non-collective damping width. By comparison of the numerical results to the new analytic
formula, the parameter η = √

κaB was identified to separate the regime of non-collective
damping (η � 1) from the regime, where the coupling between single-particle states and
collective excitations dominantly determine the single-particle damping (η � 1) at small
momenta. This analysis complements earlier work on the electron spectral function based on
the plasmon-pole approximation.

For η � 1, the analytic formula (28) is a good approximation for the self-energy.
Furthermore, the use of the analytic formula for the self-energy as an initialization of the
iterative algorithm leads to significantly faster convergence as compared to other methods,
where a Gaussian ansatz is used as the initial spectral function.

The non-collective damping is a purely classical result, no powers of h̄ appear. This is
fundamentally different from the quasi-particle approximation to the imaginary part of the self-
energy which has no classical limit, i.e. the self-energy diverges in the limit h̄ → 0. It could
be shown that this problem, as well as the paradox of being density independent, stem from
the inherently inconsistent treatment of the self-energy in the quasi-particle approximation.
The long-time open question of the classical limit of the single-particle self-energy can now
be regarded as settled.

The results reported in this work are of paramount importance for many-particle theory and
applications to dense plasmas. In particular, simple analytic expressions for the single-particle
spectral function and self-energy in the classical and in the degenerate limit are needed to
construct Padé-like interpolation formulae that cover the complete density–temperature plane.
Such expressions would greatly simplify the calculation of equation of state, transport and
optical properties of dense, high energy plasmas, solid state devices but also nuclear, hadronic
and partonic matter, and provide benchmarks for numerical approaches, i.e. simulation
techniques. One part of this task, the analytic formula for non-degenerate dilute plasmas
has been accomplished in this work.
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Appendix A. Details on the GW (0)-approximation

Throughout the appendix, the Rydberg system of units will be applied to keep the formulae
short and readable. In these units h̄ = kB = 1, e2 = 2, ε0 = 1/4π and m = 1/2.

We start from the representation of the self-energy in terms of the full Green
function G(p, zν), the dynamically screened potential W(q, ωμ) and the vertex function
�(p, p + q; zν, zν + ωμ), given by the diagram

Σ(p, zν ) =

G

W

Γ(0) Γ

.

(A.1)

In the GW -approximation, the vertex is replaced by the bare vertex �(0) = e, i.e. the charge
of the considered particles, electrons in this case,

Σ(p, zν ) =

G

W

Γ(0) Γ(0)

(A.2)

= −T
∑
q,ωμ

G(p − q, zν − ωμ)W(q, ωμ), (A.3)

which is equation (11). The dynamically screened interaction is taken in the random phase
approximation [46],

W(0)(q, ωμ) = V (q)

εRPA(q, ωμ)
, (A.4)

εRPA(q, ω + iδ) = 1 − V (q)�RPA(q, ω + iδ) (A.5)

�RPA(q, ω + iδ) = −
∑

k

nF(εk+q/2) − nF(εk−q/2)

ω + iδ + εk−q/2 − εk+q/2
. (A.6)

Using the spectral representations of both the Green function (4) and the screened interaction
in RPA,

W(0)(q, z) = V (q)

(
1 +

∫ ∞

−∞

dω

π

Im ε−1
RPA(q, ω + iδ)

z − ω

)
, (A.7)

leads to

�(p, zν) = −T
∑
q,ωμ

V (q)

∫ ∞

−∞

dω

2π

A(p − q, ω)

zν − ωμ − ω

(
1 +

∫ ∞

−∞

dω′

π

Im ε−1
RPA(q, ω′)

ωμ − ω′

)
, (A.8)

and after summation of the Bosonic Matsubara frequencies,

�(p, zν) =
∑

q

V (q)

∫ ∞

−∞

dω′′

2π
A(p − q, ω′′)

×
(

1 − nF(ω
′′) +

∫ ∞

−∞

dω′

π

Im ε−1
RPA(q, ω′)

[
nB(ω′) + 1 − nF(ω

′′)
]

zν − ω′ − ω′′

)
, (A.9)
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is obtained. This expression contains the Hartree–Fock self-energy of the interacting system,

�HF
int (p) = −

∑
q

∫ ∞

−∞

dω

2π
A(p − q, ω)nF(ω)V (q), (A.10)

and the correlated self-energy

�corr(p, zν) =
∑

q

V (q)

∫ ∞

−∞

dω′′

2π
A(p − q, ω′′)

×
∫ ∞

−∞

dω′

π

Im ε−1
RPA(q, ω′)[nB(ω′) + 1 − nF(ω

′′)]
zν − ω′ − ω′′ . (A.11)

For convenience, we skip the upper index ‘corr’ in the following and only distinguish between
the frequency-dependent self-energy �(p, ω + iδ) and the Hartree–Fock term �HF

int (p), in the
following.

After analytic continuation zν → z = ω + iδ, δ → 0, the imaginary part of the correlated
self-energy is evaluated using Dirac’s identity limδ→0 1/(x ± iδ) = P1/x ∓ iπδ(x),

Im �(p, ω + i0+) = 1

nF(ω)

∑
q

∫ ∞

−∞

dω′

2π
Vee(q)A(p − q, ω − ω′)

× Im ε−1
RPA(q, ω′)nB(ω′)nF(ω − ω′), (A.12)

where the exact relation nB(ω′) + 1 − nF(ω − ω′) = −nB(ω′)nF(ω − ω′)/nF(ω) was used.
This equation is given as (16) in the main text.

Appendix B. Analytic self-energy for the classical one-component plasma

In the high temperature limit kBT � EF, we replace the Fermi–Dirac distributions in the
self-energy equation (16) as well as in the dielectric function (14) by the Maxwell–Boltzmann
distribution, nF(εk) → f (k) = n�3

2 exp(−εk/T ) with the thermal de-Broglie wavelength
� = (4π/T )1/2. In this approximation, the polarization function takes the form [39],

Re �RPA(q, ω) = n

2qT

[(
ω

q
− q

)
1F1

(
1, 3/2,−

(
ω

2q
√

T
− q

2
√

T

)2
)

−
(

ω

q
+ q

)
1F1

(
1, 3/2,−

(
ω

2q
√

T
+

q

2
√

T

)2
)]

(B.1)

Im �RPA(q, ω) = T n�3

8πq

[
exp

(
−

(
ω

2q
√

T
+

q

2
√

T

)2
)

− exp

(
−

(
ω

2q
√

T
− q

2
√

T

)2
)]

(B.2)

= −T n�3

8πq
exp

(
− ω

2T

)
exp

(
−

(
ω2

4q2T
+

q2

4T

))
1

nB(ω)
. (B.3)

Then, the imaginary part of the self-energy writes

Im �(p, ω + iδ) = 2κ2

π3/2

√
T

∫ 1

−1
d cos θ

∫ ∞

0
dq

∫ ∞

−∞
dω′ 1

q3

exp
(−(

ω′2
4q2T

+ q2

4T

))
|ε(q, ω′)|2 exp

(
ω′

2T

)

× Im �(p − q, ω + iδ − ω′)
[ω − ω′ − εp−q − Re �(p − q, ω − ω′)]2 + [Im �(p − q, ω − ω′)]2 . (B.4)
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Furthermore, the Born approximation is applied, i.e. the dielectric function in the denominator
is replaced by the Debye expression, εD(q, 0) = 1 +κ2/q2. Diagrammatically, the self-energy
in this approximation is written as

Σ(p, zν ) =

G

VD

ΠRPA

VD . (B.5)

VD denotes the Debye potential VD(q) = e2/ε0(q
2 + κ2)�0.

Since the main contribution to the q-integral stems from momenta q < κ , we neglect the
transfer wavenumber q in the argument of the self-energy on the rhs and write

Im �(p, ω + iδ) = 2κ2

π3/2

√
T

∫ 1

−1
d cos θ

∫ ∞

0
dq

∫ ∞

−∞
dω′

× 1

q3

exp
(−(

ω′2
4q2T

+ q2

4T

))
[
1 + κ2

q2

]2 exp

(
ω′

2T

)

× Im �(p, ω + iδ − ω′)
[ω − ω′ − εp−q − Re �(p, ω − ω′)]2 + [Im �(p, ω − ω′)]2 . (B.6)

Furthermore, we neglect the term q2/4T in the exponential which is small for high temperatures
and for q < κ ,

Im �(p, ω + iδ) = 2κ2

π3/2

√
T

∫ 1

−1
d cos θ

∫ ∞

0
dq

∫ ∞

−∞
dω′

× q

[q2 + κ2]2
exp

(
− ω′2

4q2T

)
exp

(
ω′

2T

)

× Im �(p, ω + iδ − ω′)
[ω − ω′ − εp−q − Re �(p, ω − ω′)]2 + [Im �(p, ω − ω′)]2 . (B.7)

This equation was given in section 4 as (25).
Now, the integration over the angle θ can be performed as

Im �(p,ω + iδ) = 2κ2

π3/2

√
T

∫ 1

−1
d cos θ

∫ ∞

0
dq

∫ ∞

−∞
dω′ q

[q2 + κ2]2

× exp

(
− ω′2

4q2T

)
exp

(
ω′

2T

)
Im �(p, ω + iδ − ω′)

4p2q2

×
[ (

ω − ω′ − p2 − q2 + μ − Re �(p,ω − ω′)
2pq

+ cos θ

)2

+

(
Im �(p, ω + iδ − ω′)

2pq

)2 ]−1

(B.8)

= κ2

π3/2p

√
T

∫ ∞

0
dq

∫ ∞

−∞
dω′ 1

[q2 + κ2]2
exp

(
− ω′2

4q2T

)
exp

(
ω′

2T

)
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×
[

arctan

(
(p + q)2 − ω − μ + Re �(p, ω − ω′)

Im �(p, ω + iδ − ω′)

)

× arctan

(
(p − q)2 − ω − μ + Re �(p, ω − ω′)

Im �(p, ω + iδ − ω′)

)]
, (B.9)

where the integral
∫

dx/[(a + x)2 + b2] = b−1 arctan((a + x)/b) was used.
In the limit q → 0 the identity

lim
q→0

1

2q
√

T
e−ω′2/4q2T = √

πδ(ω′), (B.10)

allows us to perform the frequency integration,

Im �(p,ω + iδ) = κ2

π3/2p

√
T

∫ ∞

0
dq

2q
√

T

[q2 + κ2]2

∫ ∞

−∞
dω′ exp

(
ω′

2T

) exp
( − ω′2

4q2T

)
2q

√
T

×
[

arctan

(
(p + q)2 − ω − μ + Re �(p, ω − ω′)

Im �(p, ω + iδ − ω′)

)

− arctan

(
(p − q)2 − ω − μ + Re �(p, ω − ω′)

Im �(p, ω + iδ − ω′)

) ]

= 2κ2T

π3/2p

∫ ∞

0
dq

q

[q2 + κ2]2

∫ ∞

−∞
dω′ exp

(
ω′

2T

) √
πδ(ω′)

×
[

arctan

(
(p + q)2 − ω − μ + Re �(p, ω − ω′)

Im �(p, ω + iδ − ω′)

)

− arctan

(
(p − q)2 − ω − μ + Re �(p, ω − ω′)

Im �(p, ω + iδ − ω′)

) ]

= 2κ2T

πp

∫ ∞

0
dq

q

[q2 + κ2]2

×
[

arctan

(
(p + q)2 − ω − μ + Re �(p, ω)

Im �(p, ω + iδ)

)

− arctan

(
(p − q)2 − ω − μ + Re �(p, ω)

Im �(p, ω + iδ)

) ]
. (B.11)

Using the following power expansion of the arctan-function

arctan(1 + x) = π

4
+

x

2
+ O(x3), (B.12)

i.e.

arctan

(
(p + q)2 − ω − μ + Re �(p, ω)

Im �(p, ω + iδ)

)
− arctan

(
(p − q)2 − ω − μ + Re �(p, ω)

Im �(p, ω + iδ)

)

= 4pq

{
Im �(p, ω + iδ)

[
1 +

(
p2 − ω − μ + Re �(p, ω)

Im �(p, ω + iδ)

)2
]}−1

+ O(q3),

(B.13)

we obtain

Im �(p,ω + iδ) = 2κ2T

πp

∫ ∞

0
dq

q

[q2 + κ2]2

× 4pq

{
Im �(p, ω + iδ)

[
1 +

(
p2 − ω − μ + Re �(p, ω)

Im �(p, ω + iδ)

)2
]}−1

,

(B.14)
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which can be turned into

[Im �(p, ω + iδ)]2 + [p2 − ω − μ + Re �(p, ω)]2 = 8κ2T

π

∫ ∞

0
dq

q2

(q2 + κ2)2

= 2κT . (B.15)

To solve this single equation for the two unknown Re �(p, ω) and Im �(p, ω + iδ), we make
use of the spectral representation of the Green function

G(p, z) = [z − p2 − �(p, z)]−1 =
∫ ∞

−∞

dω

2π

A(p, ω)

z − ω

=
∫ ∞

−∞

dω

2π

Im �(p, ω + iδ)

z − ω

[
(Im �(p, ω + iδ))2 + (ω + μ − p2 − Re �(p, ω))2

]−1

(B.16)

=
∫ ∞

−∞

dω

2π

Im �(p, ω + iδ)

z − ω

1

2κT
= �(p, z)

2κT
. (B.17)

In the last step we also used the spectral representation of the correlated self-energy. The last
equation has the solution

�(p, z) = z − p2 + μ

2
±

[(
z − p2 + μ

2

)2

− 2κT

]1/2

. (B.18)

With z = ω + iδ and having in mind that Im �(p, ω + iδ) < 0 for δ > 0, we finally find

�(p, ω + iδ) = ω + μ − p2

2
− sign(ω + μ − p2)

[(
ω + μ + iδ − p2

2

)2

− 2κT

]1/2

, (B.19)

i.e. equation (28).

Appendix C. Details for the quasi-particle self-energy

We start from (25) for the imaginary part of the self-energy using the Born approximation for
the screened interaction potential:

Im �(p, ω + iδ) = −
√

T κ2

π3/2

∫ 1

−1
d cos θ

∫ ∞

0
dq

∫ ∞

−∞
dω′ q

(q2 + κ2)2

×A(p − q, ω − ω′) exp

(
ω′

2T

)
exp

(
− ω′2

4q2T

)
. (C.1)

By assuming a frequency and momentum independent self-energy �(p, ω) ≡
�(0, E0/h̄), this becomes

Im �(0, E0/h̄) = 2
√

T κ2

π3/2

∫ 1

−1
d cos θ

∫ ∞

0
dq

∫ ∞

−∞
dω′ q(

q2 + κ2
)2

× Im �(0, E0/h̄)

[ω′ + q2]2 + [Im �(0, E0/h̄)]2 exp

(
ω′

2T

)
exp

(
− ω′2

4q2T

)
. (C.2)

Since the self-energy is assumed to be independent of the frequency, the real part of the
correlated self-energy vanishes exactly. For the Hartree–Fock part of the self-energy is
proportional to n�3 in the classical limit [8], we also neglect this term, since it gives
contributions of higher order in n, whereas we are only interested in the lowest order.
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After eliminating Im �(0, E0/h̄) on both sides, performing the trivial integration over the
angle θ , which yields a factor 2, the frequency integration is performed by the help of [52]∫ ∞

0

exp(−t2)dt

z − t
= π

2iz
exp(−z2) erfc(−iz), (C.3)

leading to

1 = 4

√
T

π3
κ2

∫ ∞

0

dq q

(q2 + κ2)2

∫ ∞

−∞

exp(−ω′2/4q2T ) dω′

[q2 + ω′]2 + [Im �(0, E0/h̄)]2
(C.4)

= −4

√
T

π3
κ2

∫ ∞

0

dq q

(q2 + κ2)2

π Re[exp(−z2) erfc(iz)]

Im �(0, E0/h̄)
, (C.5)

which is rewritten as

Im �(0, E0/h̄) = −4

√
T

π
κ2

∫ ∞

0

dq q

(q2 + κ2)2
Re[exp(−z2) erfc(iz)], (C.6)

with

z = q2 + i Im �(0, E0/h̄)

2q
√

T
. (C.7)

Equation (C.6) is given as (35) in section 5. It should be noted at this point that the integral
converges only for finite κ , i.e. the Coulomb limit κ → 0 does not yield a finite result.

Most contributions to the integral stem from small values of the wavevector, q � κ .
Therefore, we may neglect the real part of z and write z = i Im �(0, E0/h̄)/2q

√
T . Using the

expansion

lim
x→+∞ exp(x2) erfc(x) = 1√

πx
− 1

2
√

πx2
+ O(x−3) (C.8)

in lowest order only, the q-integral can be performed, resulting in

Im �(0, E0/h̄) = −4

√
T

π
κ2

∫ ∞

0

dq q

(q2 + κ2)2
(C.9)

× Re[exp(−(i Im �(0, E0/h̄)/2q
√

T )2) erfc(i · i Im �(0, E0/h̄)/2q
√

T )]

= −4

√
T

π
κ2

∫ ∞

0

dq q

(q2 + κ2)2
(C.10)

× Re[exp((−Im �(0, E0/h̄)/2q
√

T )2) erfc(−Im �(0, E0/h̄)/2q
√

T )]

	 −2

√
T

π
κ2

∫ ∞

0

dq q

(q2 + κ2)2

1√
π(−Im �(0, E0/h̄)/2q

√
T )

(C.11)

= 8T κ2

π Im �(0, E0/h̄)

∫ ∞

0

dq q2

(q2 + κ2)2
= 8T κ2

π Im �(0, E0/h̄)

π

4κ
. (C.12)
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Finally, from the last line,

Im �(0, E0/h̄) = −
√

2T κ, (C.13)

is obtained, and, after re-establishing SI units, equation (38).

References

[1] Chabrier G, Saumon D and Potekhin A Y 2006 J. Phys. A: Math. Gen. 39 4411–9
[2] Remington B A, Drake R P and Ryutov D D 2006 Rev. Mod. Phys. 78 755
[3] Lindl J 1995 Phys. Plasmas 2 3933–4024
[4] Hoffmann D H H et al 2005 Laser Part. Beams 23 47
[5] Zastrau U et al 2008 (at press)
[6] Fetter A L and Walecka J D 1971 Quantum Theory of Many-Particle Systems (New York: McGraw-Hill)
[7] Mahan G D 1981 Many-Particle Physics 2nd edn (New York: Plenum)
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[37] Wierling A and Röpke G 1998 Contrib. Plasma Phys. 38 513
[38] Schepe R, Schmielau T, Tamme D and Henneberger K 1998 Phys. Stat. Solidi (b) 206 273–9
[39] Fennel W and Wilfer H P 1974 Ann. Phys., Lpz 32 265–76
[40] Lundquist B I 1967 Phys. Kondens. Mater. 6 206
[41] Glasser M L and Lamb G 2007 J. Phys. A: Math. Theor. 40 1215–8
[42] Ziesche P 2007 Phys. Status Solidi b 244 2022–36
[43] Ziesche P 2007 Ann. Phys., Lpz 16 45
[44] Ward J 1950 Phys. Rev. 78 182
[45] Tamme D, Schepe R and Henneberger K 1999 Phys. Rev. Lett. 83 241
[46] Arista N R and Brandt W 1984 Phys. Rev. A 29 1471–80

26

http://dx.doi.org/10.1088/0305-4470/39/17/S16
http://dx.doi.org/10.1103/RevModPhys.78.755
http://dx.doi.org/10.1063/1.871025
http://dx.doi.org/10.1088/0954-3899/20/12/005
http://dx.doi.org/10.1088/1367-2630/7/1/098
http://dx.doi.org/10.1088/0953-8984/10/8/009
http://dx.doi.org/10.1088/0953-8984/10/8/010
http://dx.doi.org/10.1103/PhysRevE.69.046407
http://dx.doi.org/10.1016/S0370-1573(98)00056-8
http://dx.doi.org/10.1002/ctpp.200710040
http://dx.doi.org/10.1103/PhysRevE.52.5387
http://dx.doi.org/10.1088/0034-4885/61/3/002
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRevB.54.8411
http://dx.doi.org/10.1103/PhysRevB.57.2108
http://dx.doi.org/10.1103/PhysRevLett.59.819
http://dx.doi.org/10.1103/PhysRevB.37.10159
http://dx.doi.org/10.1088/0953-8984/19/11/116207
http://dx.doi.org/10.1209/epl/i2004-10292-4
http://dx.doi.org/10.1209/epl/i2006-10266-6
http://dx.doi.org/10.1088/0953-4075/28/17/017
http://dx.doi.org/10.1238/Physica.Topical.080a00495
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/PhysRevB.74.033101
http://dx.doi.org/10.1088/1367-2630/7/1/126
http://dx.doi.org/10.1002/ctpp.2150350602
http://dx.doi.org/10.1002/ctpp.2150380405
http://dx.doi.org/10.1002/(SICI)1521-3951(199803)206:1<273::AID-PSSB273>3.0.CO;2-T
http://dx.doi.org/10.1007/BF02422717
http://dx.doi.org/10.1088/1751-8113/40/6/002
http://dx.doi.org/10.1002/pssb.200642474
http://dx.doi.org/10.1002/andp.200610220
http://dx.doi.org/10.1103/PhysRevLett.83.241
http://dx.doi.org/10.1103/PhysRevA.29.1471


J. Phys. A: Math. Theor. 41 (2008) 445501 C Fortmann

[47] Bohm D and Gross E P 1949 Phys. Rev. 75 1851–64
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